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Abstract

In the past decade, we have seen the development of a new set of tests for structural
change of unknown timing in regression models, most notably the SupF statistic of
Andrews (1993, Econometrica 61, 825}856), the ExpF and AveF statistics of Andrews-
Ploberger (1994, Econometrica 62, 1383}1414), and the ¸ statistic of Nyblom (1989,
Journal of American Statistical Association 84, 223}230). The distribution theory used
for these tests is primarily asymptotic, and has been derived under the maintained
assumption that the regressors are stationary. This excludes structural change in the
marginal distribution of the regressors. As a result, these tests technically cannot dis-
criminate between structural change in the conditional and marginal distributions. This
paper attempts to remedy this de"ciency by deriving the large sample distributions of the
test statistics allowing for structural change in the marginal distribution of the regressors.
We "nd that the asymptotic distributions of the SupF, ExpF, AveF and ¸ statistics are not
invariant to structural change in the regressors. To solve the size problem, we introduce
a &"xed regressor bootstrap' which achieves the "rst-order asymptotic distribution, and
appears to possess reasonable size properties in small samples. Our bootstrap theory
allows for arbitrary structural change in the regressors, including structural shifts, poly-
nomial trends, and exogenous stochastic trends. It allows for lagged dependent variables
and heteroskedastic error processes. ( 2000 Elsevier Science S.A. All rights reserved.
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1A notable exception is Ploberger and KraK mer (1996) who show that in the presence of general
trends in the regressors, the asymptotic distribution of the CUSUM test (which is similar to the
Nyblom test) is bounded by the asymptotic distribution in the case of stationary regressors.

1. Introduction

There has been a recent surge of interest in tests for constancy of parameters
in dynamic econometric models. The classic approach of assuming that the date
of structural change is known has been replaced by testing procedures which do
not presuppose such knowledge. Particularly important contributions include
Nyblom's (1989) test for martingale parameter variation, Andrews' (1993)
asymptotic theory for Quandt's (1960) test for a one-time parameter shift, and
the exponentially weighted tests of Andrews and Ploberger (1994). There ap-
pears to be considerable interest in the practical implications of these tests for
econometric practice; see the recent exploratory work of Stock and Watson
(1996).

The distribution theory referenced above has been derived under the assump-
tion that the conditioning variables are stationary.1 This might not be a desir-
able assumption in practice. Consider the standard linear regression model

y
ni
"x@

ni
b
ni
#e

ni
, i"1,2, n, (1)

with p2"E(e2
ni
)(R. When we test for structural change in Eq. (1), we are

typically interested in whether or not b
ni

is constant, and not particularly
concerned with the distribution of x

ni
. Thus the question of structural change in

(1) is conceptually distinct from the question of whether or not x
ni

is stationary.
Note that we have written the variables in (1) using array notation. This will
facilitate large sample distribution assumptions allowing for non-stationarity in
these processes, but otherwise has no important content.

In fact, it is often of particular interest to test for structural change in the
conditional relationship (1) when it is known that the distribution of the
conditioning variable x

ni
has experienced a structural change. Indeed, constancy

of (1) in the presence of a shift in the marginal distribution of x
ni

is part of the
de"nition of super exogeneity proposed by Engle et al. (1983). Tests of this
hypothesis have been discussed by Hendry (1988) and Engle and Hendry (1993).

If the distributions of tests for constancy of b
ni

are robust to structural change
in x

ni
, then we would have nothing to worry about, as a signi"cant test statistic

could be unambiguously interpreted as evidence for structural instability in b
ni
.

But this may not be the case. If the null distribution is a!ected by a structural
change in x

ni
, then a signi"cant test statistic could indicate that there is

instability in either b
ni

or x
ni

(a conclusion which is not of much interest), and
if the distribution under the alternative is adversely a!ected, power could
su!er.
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In this paper we carefully explore the asymptotic distributions allowing for
structural change in the regressors. In Section 2 we describe the model and test
statistics, allowing for a one-time structural change in the regression parameters.
In Section 3 we describe the "rst-order asymptotic theory. We consider both
asymptotically stationary and non-stationary processes, where the latter in-
cludes structural change in the regressors. We "nd that the distributions are
di!erent for non-stationary regressors. To quantify these di!erences, Section
4 explores the important special case of a single structural change in the
marginal process. We "nd that the size and power distortions can be quite large.
In particular, Nyblom's ¸ statistic is asymptotically conservative, and the size
distortion of Quandt's SupF statistic is potentially unbounded. In Section 5 we
discuss asymptotically valid inference based on a bootstrap distribution. In
a simulation experiment, we "nd that this bootstrap technique works quite well
when compared with the conventional asymptotic tests. Section 6 concludes.
Proofs are presented in an Appendix.

Throughout the paper, I( ) ) denotes the indicator function, [ ) ] denotes integer
part, and &N' denotes weak convergence with respect to the uniform metric over
r3[0, 1] (see Section 18 of Billingsley (1968)).

2. Model and tests

The conditional distribution of y
ni

given x
ni

takes the form of a linear
regression (1) where y

ni
is real valued and x

ni
is an m-vector, and structural

change in the conditional distribution arises through the coe$cient b
ni
. The

structural change in b
ni

takes the form

b
ni
"G

b, i(t
0
,

b#h
n
, i*t

0
.

(2)

The parameter t
0
3[t

1
, t

2
] indexes the relative timing of the structural shift, and

h
n

indexes the magnitude of the shift.
We are interested in tests of H

0
: h

n
"0 against H

1
: h

n
O0. To examine

asymptotic local power we will specify H
1

as local to H
0
. Speci"cally, we assume

that h
n

takes the form

h
n
"dp/Jn (3)

with d "xed as nPR. The parameter d indexes the degree of structural change
under the local alternative H

1
. For concreteness, we collect our maintained

assumptions:

Assumption 1. The linear regression model is given by Eqs. (1)}(3). The error
e
ni

is a martingale di!erence: E(e
ni

DI
ni~1

)"0 where I
ni~1

is the sigma-"eld
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generated by current x
ni

and lagged values of (x
ni
, e

ni
). The sequence e2

ni
satis"es

a WLLN, so that n~1+n
i/1

e2
ni
P

1
p2. The parameters q

0
"t

0
/n, n

1
"t

1
/n'0

and n
2
"t

2
/n(1 are "xed as nPR.

Sometimes we will add the assumption that e
ni

is conditionally homos-
kedastic:

E(e2
ni

D I
ni~1

)"p2, a.s. (4)

Under H
0
, model (1)}(2) reduces to y

ni
"x@

ni
b#e

ni
which does not depend on

t
0
. Denote the ordinary least squares (OLS) estimator bK , residuals e(

i
, and

variance estimate p( 2"(n!m)~1+n
i/1

e( 2
i
. Under the alternative H

1
: h

n
O0, the

model can be written as

y
ni
"x@

ni
b#x@

ni
h
n
I(i*t

0
)#e

ni
. (5)

For any "xed t, (5) can be estimated by OLS, yielding estimates (bK
t
, hK

t
), residuals

e(
it

and variance estimate p( 2
t
"(n!2m)~1+n

i/1
e( 2
it
. Let tK"argminp( 2

t
denote the

least squares estimate of the breakdate and set bI "bK
tK
and e8

i
"e(

itK
.

The standard test for H
0

against H
1

for known t (e.g., Chow, 1960) is the
Wald statistic:

F
t
"

(n!m)p( 2!(n!2m)p( 2
t

p( 2
t

. (6)

The Wald statistic F
t
is equivalent to the likelihood ratio statistic when e

ni
is iid

N(0, p2).
We are interested in tests of H

0
when the true changepoint t

0
is unknown.

Quandt (1960) proposed the likelihood ratio test which is equivalent to
SupF

n
"sup

t
F
t
, where the supremum is taken over t3(t

1
, t

2
). Andrews and

Ploberger (1994) developed a theory of optimal testing, and suggested a related
family of tests, including an exponentially weighted Wald test (optimal against
distant alternatives) ExpF

n
"ln:exp(F

t
/2) dw(t) and the average F test (optimal

against very local alternatives) AveF
n
":

t
F
t
dw(t), where w is a measure putting

weight 1/(t
2
!t

1
) on each integer t in the interval [t

1
, t

2
]. The Quandt and

Andrews}Ploberger statistics assume that h
n

and t
0

are unknown parameters.
Nyblom (1989) instead considered random structural change. Let h

n
and t

0
be random variables such that E[h

n
Mi"t

0
N]"0 and E[h

n
h@
n
Mi"t

0
N]"

(+n
t/1

x
ni
x@
ni
)~1/2 for some real number /. Nyblom's (1989) Lagrange Multiplier

(LM) test for /2"0 against /2'0 rejects for large values of

¸
n
"

1

np( 2
n
+
i/1
A

i
+
t/1

x
nt
e(
tB@A

n
+
t/1

x
nt
x@
ntB

~1

A
i
+
t/1

x
nt
e(
tB. (7)
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3. Asymptotic theory

3.1. Asymptotically stationary process

Andrews (1993), Andrews}Ploberger (1994) and Nyblom (1989) assumed that
the data are stationary. We now show that their distribution theory holds
somewhat more broadly.

Dexnition 1. An array a
ni

is asymptotically mse-stationary if

1

n

*nr+
+
i/1

a
ni
a@
ni
NrA (8)

where A"lim
n?=

(1/n)+n
i/1

E(a
ni
a@
ni
).

A su$cient condition for asymptotic mse-stationarity is weak stationarity
(constancy of "rst and second moments), but the de"nition is somewhat broader,
allowing for certain deterministic cyclic processes, seasonal dummies, and &sta-
tionary' forms of heteroskedasticity.

An interesting example is an AR(1) subject to small structural change:

y
ni
"b

ni
y
ni~1

#e
ni

(9)

with e
ni

iid, and b
ni

following (2)}(3). Since b
ni

changes from b to b#h
n

at time
t
0
, y

ni
is non-stationary. Yet since h

n
P0 as nPR, this non-stationarity may

not be important in large samples. For simplicity, suppose that h
n
'0 and

Ey2
n0
"p2/(1!b2),A. Then for i(t

0
, Ey2

ni
"A, and for i*t

0
, A)Ey2

ni
)

A
n
"p2/(1!(b#h

n
)2)PA as nPR. Thus

rA)EA
1

n

*nr+
+
i/1

y2
niB)rA

n
PrA.

It follows by standard arguments that (8) holds for y
ni
, so that y

ni
is asymp-

totically mse-stationary.
We now explore the distribution theory for our model under this assumption.

Theorem 1. If Assumption 1 holds, x
ni

is asymptotically mse-stationary, (4) holds,
and for some 1(q(2,

sup
nw1,ixn

EDx
ni
D2q(R (10)

and

sup
nw1,ixn

EDx
ni
e
ni
D2q(R (11)
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then the asymptotic null distributions of SupF
n
, ExpF

n
,AveF

n
, and ¸

n
are those

given in Andrews (1993), Andrews and Ploberger (1994) and Nyblom (1989).

Theorem 1 shows that the key assumption for the asymptotic theory is the
asymptotic constancy of second moments. Intuitively, in linear regression in-
formation is re#ected in the second moments of the data, and when the data are
asymptotically mse-stationary information is accumulated linearly.

3.2. Asymptotically non-stationary processes

The key condition for Theorem 1 is that the second moments of the cumulat-
ed data grow linearly. In this section we explore the consequences of violations
of this assumption. We now consider a set of high-level conditions on the sample
moments. We will give a list of standard examples which satisfy these conditions
at the end of this section.

Assumption 2. As nPR

1

n

*nr+
+
i/1

x
ni
x@
ni
NM(r), (12)

1

n

*nr+
+
i/1

x
ni
x@
ni
e2
ni
/p2N<(r), (13)

and

1

pJn

*nr+
+
i/1

x
ni
e
ni
NN(r), (14)

where M(r), <(r) and N(r) are random m]m, m]m, and m]1 matrix processes,
respectively, such that M(r) and <(r) are continuous in r almost surely, for any
r'0, M(r)'0 and <(r)'0 a.s., and conditionally on M<(s): 0)s)1N, N(r) is
a mean-zero Gaussian process with conditional covariance kernel

E(N(r
1
)N(r

2
)@)"<(min(r

1
, r

2
)). (15)

Assumption 2 is a generalization of asymptotic mse-stationarity, because if
x
ni

and x
ni
e
ni

are asymptotically mse-stationary, (12)}(14) are satis"ed with M(r)
and <(r) linear matrix functionals, and N(r) a Brownian motion (this is the
essence of the proof of Theorem 1). Below, we discuss a set of examples which
satisfy Assumption 2, and Section 4 explores in detail a particular example. First
we give the asymptotic distributions of the structural change tests under local
alternatives.
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2The results of Theorem 2 stand in stark contrast to those for the Chow (1960) test for structural
change of known timing. From (16), one can deduce that the asymptotic null distribution of the
Chow F statistic is chi-square and hence it is asymptotically pivotal.

Theorem 2. Under Assumptions 1 and 2,

F
*nr+

N(NH(r)!Q(r)d)@MH(r)~1(NH(r)!Q(r)d)

,F(rDd) (16)

where

NH(r)"N(r)!M(r)M(1)~1N(1) (17)

Q(r)"(M(r)!M(r)M(1)~1M(q
0
))!(M(r)!M(q

0
))I(r*q

0
),

and

MH(r)"M(r)!M(r)M(1)~1M(r). (18)

Hence

1. SupF
n
P

$
supn1xrxn2

F(r D d);

2. ExpF
n
P

$
lnC

1

n
2
!n

1

:n2
n1

exp(1
2
F(r D d)) drD;

3. AveF
n
P

$

1

n
2
!n

1

:n2n1
F(r D d) dr;

4. ¸
n
P

$
:1
0
(NH(r)!Q(r)d)@M(1)~1(NH(r)!Q(r)d) dr.

Theorem 2 gives the asymptotic distributions under local departures from H
0
.

To "nd the null distribution, set d"0, in which case we "nd

F(r),F(r D 0)"NH(r)@(M(r)!M(r)M(1)~1M(r))~1NH(r).

Unless M(r) is linear in r, NH(r) will not be a Brownian bridge and F(r) will not
equal the squared tied-down Bessell process that appears in Andrews (1993). It
follows that the asymptotic distributions of the test statistics given in Theorem
2 are di!erent than the distributions tabulated by Andrews (1993), Andrews and
Ploberger (1994) and Nyblom (1989). Apparently, these tests for structural
change are not asymptotically pivotal when we allow for asymptotic non-
stationarity.2

The null sampling distributions of the test statistics examined in Theorem
2 appear to depend on the functions M(r) and <(r). No other nuisance para-
meters enter the asymptotic distributions. Under the alternative hypothesis
(dO0), the only additional nuisance parameter is q

0
, the true timing of the

structural change in regression parameter.
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Theorem 2 applies in many interesting examples. In the following examples,
for simplicity we assume that the error e

ni
satis"es (4), in which case<(r)"M(r).

The conditions for Assumption 2 may be veri"ed using standard techniques; see,
for example, Hansen (1992).

Example 1. Linear trend: x
ni
"i/n. Then M(r)"r3/3 and N(r)":r

0
sd=(s).

Example 2. Trend in variance: x
ni
"Ji/n v

i
with v

i
iid(0, 1). Then M(r)"r2/2

and N(r)":r
0
s1@2d=(s).

Example 3. Stochastic trend: x
ni
"n~1@2z

i
, where *z

i
is I(0), satis"es Assump-

tion 1 of Hansen (1992), and is independent of e
ni`j

for all j. Then letting=
2

and
=

1
denote independent Brownian motions, M(r)":r

0
=

2
(s)2 ds and N(r)"

:r
0
=

2
(s) d=

1
(s). Using similar reasoning, Assumption 2 applies to cointegrated

regression models estimated using the leads-and-lags technique of Saikkonen
(1991), Phillips and Loretan (1991) and Stock and Watson (1993).

In all three examples, M(r) is non-linear and N(r) is not a Brownian motion.
This non-linearity implies that the tabulated critical values in Andrews (1993),
Andrews and Ploberger (1994) and Nyblom (1989) will be inappropriate in these
contexts. We now turn to a more thorough examination of a particular example
of interest.

4. Structural change in the marginal distribution

To illustrate the possible divergence between the distribution results of
Theorems 1 and 2, we examine the case where there is a single structural change
in the marginal distribution of x

ni
at date k. We extend De"nition 1 slightly by

saying that a
i

is asymptotically mse-stationary over the region (k
1
, k

2
) with

k
1
"[ni

1
], k

2
"[ni

2
] if (1/n)+k2

i/k1
a
i
a@
i
N(i

2
!i

1
)A

12
for some matrix A

12
.

Assumption 3. Let k"[ni] and i3(0, 1). The variables x
ni

is asymptotically
mse-stationary for i(k, and x

ni
is asymptotically mse-stationary for i*k. Eqs.

(4) and (11) hold.

Assumption 3 speci"es that the marginal distribution of x
t
is asymptotically

stationary before and after the date k, but allows an arbitrary structural change
at observation k. The change may occur in the mean, variance and/or serial
correlation in the regressor. Note that Assumption 3 allows for lagged depen-
dent variables as discussed in Section 3.1. It is straightforward to verify that
Assumption 3 implies Assumption 2 with

M(r)"M
1
r#(M

2
!M

1
)(r!i)I(r*i), (19)
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and <(r)"M(r), where

M
1
" lim

n?=

1

ni
*ni+~1

+
i/1

E(x
ni
x@
ni
), (20)

and

M
2
" lim

n?=

1

n(1!i)

n
+

i/*ni+
E(x

ni
x@
ni
). (21)

Since Assumption 2 holds, the distribution theory of Theorem 2 applies.
Under Assumption 3 the function M(r) is a piece-wise linear function in r with

a kink at r"i. We see that the accumulation of information is non-linear,
rather than linear.

To illustrate the impact this non-linearity has on the asymptotic distributions,
we consider the leading case of one regressor (m"1) so that M

2
and M

1
are

scalars. For this case we can make some interesting analytical observations
about the asymptotic null distributions of the SupF and ¸ statistics. Set
u"M

2
/M

1
!1 and

v(r)"
r#u(r!i)I(r*i)

1#u(1!i)
. (22)

Let

SupF" sup
n1xrxn2

NH(r)2
MH(r)

(23)

denote the asymptotic null distribution of SupF
n

under Assumption 3 (from
Theorem 2), where NH(r),MH(r) and M(r) are de"ned in (17), (18) and (19),
respectively.

Theorem 3.

SupF, sup
nH1xrxnH2

=H(r)2
r(1!r)

where =H(r) is a standard Brownian bridge, nH
1
"v(n

1
), and nH

2
"v(n

2
).

The distribution in Theorem 3 is identical to that found by Andrews (1993) for
stationary processes, but depends on the index

jH"nH
2
(1!nH

1
)/[nH

1
(1!nH

2
)]

rather than j"n
2
(1!n

1
)/[n

1
(1!n

2
)] as found by Andrews. Thus the rel-

evant measure of &spread' between n
1

and n
2

is not based on the linear measure
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Fig. 1. jH as a function of u and i.

r implicit in the de"nition of j, but should be based on the non-linear measure
v(r) re#ecting the actual rate of accumulation of sample information. Note that
jH is a function only of nH

1
and nH

2
, the &relative information' cumulated in the

regressors at the times n
1

and n
2
.

From Table 1 of Andrews (1993), we see that the asymptotic critical values for
SupF

n
are increasing in j. Hence if jH'j the statistic SupF

n
will tend to reject

too frequently if Andrews' critical values are used. On the other hand, if jH(j,
then SupF

n
will tend to reject too infrequently, reducing power. Setting

n
1
"0.15 and n

2
"0.85, Fig. 1 plots jH as a function of i for four posit-

ive values of u. For each u, jH is maximized at i"n
1

and minimized at
i"n

2
. As u increases, jH can become arbitrarily large. The sampling implica-

tion is that the Quandt}Andrews SupF
n

statistic can have arbitrarily large size
distortion.

While we cannot "nd a general analytic expression for the ¸ distribution, we
can "nd its limiting behavior for large u. Again for m"1 let

¸(u, i)"P
1

0

NH(r)2 dr/M(1)

denote the asymptotic null distribution of ¸
n

under Assumption 3.
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3Generated using random normal samples of size 1000 with 50,000 replications for each
u"1, 2,2,16.

4Rejection rates using asymptotic critical values and "xed parameters.
5Only graphs for positive u are shown as they are symmetric in the transformation

(u, i)P(!u, 1!i).
6Generated using random normal samples of size 1000 with 20,000 replications for

d"1, 2,2,10.

Theorem 4.

plim
u?=

¸(u,i)"(1!i)P
1

0

=H(r)2,

where =H(r) is a standard Brownian bridge.

Note that the conventional Nyblom asymptotic distribution is ¸(0, i),
:1
0
=H(r)2. Theorem 4 shows that if u is large, then the Nyblom statistic will be

asymptotically conservative, in the sense that the asymptotic distribution of the
test statistic will be dominated by the conventional distribution. This suggests
that Nyblom's test will substantially underreject the null hypothesis when u and
i are large.

Fig. 2 plots numerical estimates3 of the asymptotic Type I error4 (at the 10%
nominal level) for the four asymptotic distributions (SupF, ExpF, AveF, and ¸) as
a function of u, for i"0.25, 0.50, 0.75, and 0.95.5 The SupF

n
, ExpF

n
, and

AveF
n
tests set n

1
"0.15 and n

2
"0.85. The most striking feature of the plots is

that the Nyblom test substantially underrejects for large u (as predicted by
Theorem 4). The second most noticeable feature is that SupF

n
over-rejects for

i"0.25 and under-rejects for i"0.95 (as predicted by Theorem 3). A very
interesting "nding is that the Andrews}Ploberger ExpF

n
test has virtually zero

size distortion for any i and u.
Fig. 3 plots estimated6 asymptotic local power functions for the four test

statistics (not size-corrected) for the case of a large structural change in the
marginal distribution, u"10. The plots are as a function of d, for
i"0.25, 0.50, 0.75, and 0.95, and q

0
is set to equal i. The plots show that for

i)0.75, the power of the Nyblom test is adversely a!ected by the shift in the
marginal distribution. In the case i"0.25, the power loss is dramatic. The AveF
test also su!ers a mild power loss in some cases. In contrast, the ExpF and SupF
tests appear to have the best power, with the exception of the case i"0.95
(where the Nyblom test is over-sized).

In summary, the numerical analysis of the asymptotic distributions of the test
statistics suggest that at least for m"1 the Nyblom test is quite poorly behaved
in the presence of shifts in the marginal distribution, yet the Andrews}Ploberger
ExpF

n
statistic is essentially una!ected by such shifts. The popular
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Fig. 2. Asymptotic type I error as a function of i and u.

Fig. 3. Asymptotic local power as a function of i, q, and d.
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7 In an interesting contribution, Diebold and Chen (1996) provide simulation evidence (but no
theory) that the parametric bootstrap works well for structural change tests applied to AR(1)
processes.

Quandt}Andrews SupF
n
statistic su!ers from a mild size distortion, but with no

noticeable e!ect on power.

5. Bootstrapping

5.1. The xxed regressor bootstrap

We have seen in the previous sections that non-stationarity or structural
change in the marginal distribution a!ects the asymptotic distributions of the
test statistics in complicated ways. An alternative is to consider a bootstrap
distribution. The term &bootstrap' was introduced by Efron (1979) and has since
spawned a large literature. Most of the theory and techniques require random
samples. Extensions to dependent data have been con"ned to strictly stationary
processes, including the parametric bootstrap of Bose (1988) and the block
resampling bootstraps of Carlstein (1986) and KuK nsch (1989). To my knowledge,
there is no theoretical literature7 which applies to the present context } involv-
ing non-standard test statistics and explicitly non-stationary data processes.
A priori, it is not clear if bootstrap methods will work, as we know that standard
bootstrap techniques fail in the context of non-stationary autoregressions, see
Basawa et al. (1991).

In our model, appropriate application of the bootstrap is not obvious. Under
Assumption 2, x

ni
need not be stationary, so block re-sampling is inappropriate.

Parametric bootstrap methods are also inappropriate in conditional regression
models (except in the special case in which x

ni
is strictly exogenous). We wish to

avoid methods which require the joint modelling of y
ni

and x
ni

which require the
correct speci"cation of the marginal distribution (including any structural
changes). Such modelling violates the principle of the regression model, where
the goal is to condition on the regressors, and hence ignore their marginal
distribution.

Despite these concerns, we are able to successfully employ what we call the
&Fixed Regressor Bootstrap', which treats the regressors x

ni
as if they are "xed

(exogenous) even when they contain lagged dependent variables. We will show
that this bootstrap technique replicates the correct "rst-order asymptotic distri-
bution, but it is easy to see that in general the bootstrap does not (in any way)
replicate the "nite sample distribution of the data or the test statistics. The only
exception is when the regressors x

ni
are strictly exogenous and the errors iid

normal, in which case the homoskedastic bootstrap described below will yield
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8This is a well-known property of bootstrap inference with an exactly pivotal statistic. For an
excellent exposition, see Example 2.2 of Hall (1994).

9 It may be possible to use alternative distributions (such as the empirical distribution of the
residuals) in place of the normal.

10 In the special case of "xed exogenous regressors and independent normal errors, the statistic
p
n

can be interpreted as an exact Monte Carlo p-value (Dwass, 1957). Dufour and Kiviet (1996) use
this motivation in their analysis of the CUSUM test in regression models with "xed exogenous
regressors and independent normal errors, and use this property to develop bounds for similar
models with an added lagged dependent variable.

exact inference.8 As a result, caution should be applied when interpreting the
bootstrap tests.

The discussion which follows is for the SupF test, yet the method applies as
well for the other tests. There are two forms of the "xed regressor bootstrap
introduced here, one appropriate if the error e

ni
is homoskedastic (4) and the

other appropriate under heteroskedasticity.
For the homoskedastic bootstrap, let My

ni
(b): i"1,2, nN be a random sample

from the N(0, 1) distribution.9 Regress y
ni
(b) on x

ni
to get residual variance p( 2(b)

and regress y
ni
(b) on x

ni
and x

ni
I (i)t) to get the residual variance p( 2

t
(b) and

Wald sequence

F
t
(b)"

(n!m)p( 2(b)!(n!2m)p( 2
t
(b)

p( 2
t
(b)

.

The bootstrap test statistic is SupF
n
(b)"sup

t1xtxt2
F
t
(b). Let G

n
(x)"

P(SupF
n
(b))x D I

n
) denote the conditional distribution function of SupF

n
(b)

(conditional on the data). The bootstrap p-value10 is p
n
"1!G

n
(SupF

n
). The

bootstrap test rejects H
0

when p
n

is small.
We can allow for heteroskedastic errors by making a small modi"cation. Set

yh
ni
(b)"u

i
(b)e8

i
, where Mu

i
(b): i"1,2, nN is an iid N(0, 1) sample and e8

i
are the

regression residuals de"ned in Section 2. Construct the bootstrap test statistic
SupFn

n
(b) as before, substituting yh

ni
(b) for y

ni
(b) in the previous paragraph. This

has the bootstrap distribution Gh
n
(x)"P(SupFh

n
(b))x D I

n
) from which we de-

"ne the bootstrap p-value ph
n
"1!Gh

n
(SupF

n
).

While G
n
( ) ) is unknown, it may be calculated by simulation. Let

SupF
n
( j ), j"1,2,J, denote (conditionally) independent draws from the distri-

bution SupF
n
(b). The simulated bootstrap p-value p

n
(J) is then calculated by

counting the percentage of simulated bootstrap test statistics SupF
n
( j ) which

exceed the sample value SupF
n
. As JPR, p

n
(J)Pp

n
almost surely, so the error

due to simulation can be made arbitrarily small. For the case of heteroskedastic
errors, a simulation estimate of ph

n
, denoted ph

n
(J) may be constructed similarly.

We follow the bootstrap literature (see Hall, 1994) and consider p
n

and ph
n

to be
the bootstrap statistics of interest. It is important to remember, however, that
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inference in practice is based on the randomized estimates p
n
(J) or ph

n
(J), which

may induce additional error unless J is large.

5.2. Asymptotic theory

The following notation will be helpful. Let ¹(d)"supn1xrxn2
F(r D d) so that by

Theorem 2, SupF
n
P

$
¹(d) and ¹(0) denotes the null distribution. Let

G(x)"P(¹(0))x) denote the null asymptotic distribution function, and de"ne
the random variable p(d)"1!G(¹(d)). Note that the distribution of p(0) is
;[0,1].

Let &N
1
' denote weak convergence in probability as de"ned by Gine and

Zinn (1990). The concept &weak convergence in probability' generalizes conver-
gence in distribution to allow for conditional (i.e. random) distribution func-
tions. This is necessary for bootstrap theory as the empirical distribution used
for re-sampling is data dependent. We "rst state the results for the homoskedas-
tic bootstrap.

Theorem 5. Under Assumptions 1, 2, and (4), SupF
n
(b)N

1
¹(0) and p

n
P

$
p(d).

Corollary 1. Under Assumptions 1, 2, (4), and H
0
, p

n
P

$
;[0,1].

The "rst result of Theorem 5 states that the conditional distribution function
G

n
( ) ) is close to G( ) ) if n is su$ciently large. This means that p-value calcu-

lations based on G
n

are asymptotically equivalent to those based on G. The
second result of Theorem 5 gives the asymptotic distribution of the bootstrap
p-value p

n
. In particular, we "nd in Corollary 1 that under H

0
, p

n
is asymp-

totically distributed;[0,1], which is pivotal, so the nuisance parameter problem
has been solved (for large samples). We now state the result for the heteroskedas-
tic bootstrap.

¹heorem 6. Under Assumptions 1 and 2, SupFn
n
(b)N

1
¹(0) and ph

n
P

$
p(d).

Corollary 2. Under Assumptions 1, 2, and H
0
, ph

n
P

$
;[0,1].

Theorem 6 and Corollary 2 show that the heteroskedastic bootstrap achieves
the correct asymptotic distribution under general forms of conditional hetero-
skedasticity. This holds even though SupF

n
has not been constructed to allow

for heteroskedasticity.
It is also possible to derive the asymptotic local power functions of the

bootstrap tests from Theorems 5 and 6, which allows us to assess the behavior
of the tests under (local) alternatives. From Theorem 5, we can calculate
that

n
a
(d)" lim

n?=

P(p
n
)a)"P(p(d))a)"P(¹(d)'b)
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11This means that the reported results are unconditional, rather than conditional on a particular
set of regressors.

where b"G~1(a). The function n
a
(d) is the asymptotic local power function. As

DdDPR the non-centrality e!ect in F(rDd) causes ¹(d)PR almost surely.
Hence for any a, n

a
(d)P1 as DdDPR. In other words, the asymptotic local

power function is increasing in DdD, and the asymptotic probability of rejecting the
null hypothesis can be made arbitrarily high by selecting a su$ciently large d.

This argument does not prove that the test is consistent against "xed alterna-
tives, however, as h

n
"xed and independent of n is not covered by our theory.

A formal proof of consistency against "xed alternatives appears to be quite
intricate, and will not be attempted in this paper.

5.3. Small sample distributions

To investigate the performance of our bootstrap tests in a small sample, we
report a limited Monte Carlo experiment. The regression model is a single
equation from a bi-variate VAR:

y
i
"a

0
#a

1
y
i~1

#a
2
y
i~2

#a
3
y
i~3

#b
1
x
i~1

#b
2
x
i~2

#b
3
x
i~3

#e
i

with a sample size of n"50. We set a
1
".5 and b

1
"1 while the other

regression parameters are set to zero.
Seven models for the regressors x

i
are considered. Below, let g

i
be iid student

t with 5 degrees of freedom, let u
i
be iid N(0,1), and let c

i
"1#2i/n.

f IID: x
i
"g

i
.

f Mean break: x
i
"g

i
for i)25 and x

i
"5#g

i
for i'25.

f Variance break: x
i
"g

i
for i)25 and x

i
"5g

i
for i'25.

f Mean trend: x
i
"c

i
#u

i
.

f Variance trend: x
i
"Jc

i
u
i
.

f Stochastic trend: x
i
"x

i~1
#u

i
.

f Stochastic variance: x
i
"(+i

j/1
w
j
)u

i
, where w

i
is iid N(0, 1).

Two speci"cations for the regression error e
i
are considered. The "rst is that

e
i
is iid student t with 5 degrees of freedom. The second is that e

i
is conditionally

heteroskedastic e
i
&N(0,1#0.25x2

i~1
).

The random regressors x
i
are independently generated for each Monte Carlo

replication.11 In all experiments, the number of bootstrap replications is
J"1000 and the number of simulation replications is 5000. We report results
for tests of nominal size 10%.

We restrict attention to the SupF statistic of Andrews (1993) for simplicity.
Three distributional approximations are considered. The "rst uses the asymp-
totic approximation of Andrews (1993), the second uses the homoskedastic "xed
regressor bootstrap, and the third the heteroskedastic "xed regressor bootstrap.
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In all experiments, the null hypothesis of coe$cient stability holds, so the
rejection rate should be ideally 10%.

The results are summarized in Table 1. First consider the case of homoskedas-
tic errors, reported in the "rst half of the table. In all cases, tests based on the
conventional asymptotic approximation substantially over-reject. Tests based
on the homoskedastic bootstrap have better size, and tests based on the
heteroskedastic bootstrap are close to the correct rejection frequency.

The second half of the table reports results for the heteroskedastic error
process. The performance of all test statistic deteriorates signi"cantly. Tests
based on the conventional asymptotic approximation are extremely poor. Tests
based on the homoskedastic bootstrap are not much improved, which should
not be surprising since the technique is not designed to be robust to hetero-
skedasticity. The heteroskedastic bootstrap works much better than the other
tests for most regressor processes, achieving correct size in three of the seven
cases. In the most extreme cases, however, the heteroskedastic bootstrap also
over-rejects relative to the nominal size.

The simulation results show that the "xed regressor bootstrap improves
on asymptotic approximations, but does not completely solve the inference
problem.

6. Conclusion

This paper has attempted a careful examination of modern tests for structural
change and the associated asymptotic distribution theory. We argue that the
assumption that the regressors are stationary (without structural change) is
inappropriate in the context of testing for structural change in a regression, and
that relaxing this assumption has consequences for the asymptotic theory. We
found that the Nyblom ¸ statistic is sensitive to this assumption, so is generally
not recommended for empirical application in regression models. In a numerical
study, the Andrews}Ploberger exponentially-weighted ExpF statistic appears to
be the most stable with respect to structural change in the marginal equation.

We show that correct asymptotic inference may be obtained from a bootstrap
distribution. We consider a simple "xed regressor bootstrap, which treats the
right-hand-side regressors as "xed (even the lagged dependent variables). This
produces the correct asymptotic distribution under a wide range of conditions,
such as arbitrary structural change in the regressors including multiple struc-
tural breaks, time trends and certain stochastic trends. The regressors need not
be strictly exogenous and the regression errors may be conditionally hetero-
skedastic. This procedure is computationally cheap and easy to program. In
many contexts, bootstrap techniques can improve on the "rst-order asymptotic
distribution when they approximate an Edgeworth correction (see Hall, 1994).
This appears unlikely in the case of the "xed regressor bootstrap. Other
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bootstrap procedures are conceivable, but care must be taken to correctly mimic
the distribution under the null hypothesis, and not distort the possible non-
stationarity in the conditioning variables.

A GAUSS program which implements the empirical techniques discussed in
this paper is available upon request from the author or his web homepage.
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Appendix A. Mathematical proofs

Proof of Theorem 1. It is well known that

F
t
"

SK @
t
(M

t
!M

t
M~1

n
M

t
)~1SK

t
p( 2
t
/p2

, (24)

where M
t
"n~1+t

i/1
x
ni
x@
ni

and SK
t
"(p2n)~1@2+t

i/1
x
ni
e(
i
. Under H

0
, SK

t
"S

t
!

M
t
M~1

n
S
n
, where S

t
"(p2n)~1@2+t

i/1
x
ni
e
ni
. By the asymptotic mse-stationarity

of x
ni
, M

*nr+
NrM where M"lim

n?=
n~1+n

i/1
E(x

ni
x@
ni
). We next show that for

any aO0,

a@
1

n

*nr+
+
i/1

x
ni
x@
ni
e2
ni
aNra@Map2. (25)

Let m
ni
"a@x

ni
x@
ni
a(e2

ni
!p2). Then

EDm
ni
Dq)(a@a)q sup

nw1,ixn

[EDx
ni
e
ni
D2q#p2qEDx

ni
D2q]"B, (26)

say, and B(R by (10) and (11). By (4), m
ni

is a martingale di!erence array.
Thus for any "xed r, for C(R by Burkholder's inequality (see Hall and
Heyde, 1980, p. 23), Loeve's c

r
inequality, and (26),

EK
1

n

*nr+
+
i/1

m
ni K

q
)C

1

nq
EK

*nr+
+
i/1

Dm
ni
D2K

q@2
)C

1

nq
*nr+
+
i/1

EDm
ni
Dq)CBn1~qP0.
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By Markov's inequality it follows that (1/n)+ *nr+
i/1

m
ni
P

1
0. Thus pointwise in r,

a@
1

n

*nr+
+
i/1

x
ni
x@
ni
e2
ni
a"a@M

*nr+
p2a#

1

n

*nr+
+
i/1

m
ni
P

1
ra@Map2.

This convergence is also uniform over 0)r)1, since the left-hand argument of
(25) is monotonically increasing in r and the limit function is continuous in r (for
a proof, see Lemma A.10 of Hansen (1999)). This establishes (25).

Take any g'0. Pick an integer K*trMp2/g and let r
k
"k/K for

k"0,2,K. By (25),

max
ixn

1

n
x@
ni
x
ni
e2
ni
)max

kxK

*nrk`1+
+

i/*nrk +`1

1

n
x@
ni
x
ni
e2
ni
P

1
trMp2/K)g. (27)

Since x
ni
e
ni

is a martingale di!erence sequence, (25) and (27) imply that
S
*nr+

NB(r), a vector Brownian motion with covariance matrix M, see Davidson
(1994, Theorem 27.14). This establishes that

SK @
*nr+

(M
*nr+

!M
*nr+

M~1
n

M
*nr+

)~1SK
*nr+

N(B(r)!rB(1))@(rM!rMM~1rM)~1(B(r)!rB(1))

"

(=(r)!r=(1))(=(r)!r=(1))

r(1!r)
, (28)

where =(r) is vector standard Brownian motion. From (6) and (24) we can
calculate that

p( 2
t
"

n!m

n!2m
p( 2!

p2

n!2m
SK @
t
(M

t
!M

t
M~1

n
M

t
)~1SK

t
.

The convergence (28) and the consistency of p( 2 imply that p( 2
*nr+

Np2. The results
follow by standard manipulations. h

Proof of Theorem 2. Under H
1

(see (3) and (5)) we can calculate that

SK
t
"

1

pJn

t
+
i/1

x
ni
e(
i

"S
t
!M

t
M~1

n
S
n
#(M

t
!M

t0
)I(t*t

0
)d!M

t
M~1

n
(M

n
!M

t0
)d.
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Thus

SK
*nr+

NN(r)!M(r)M(1)~1N(1)#(M(r)!M(q
0
))I(r*q

0
)d

!(M(r)!M(r)M(1)~1M(q
0
))d

"NH(r)!Q(r)d,

and

F
*nr+

"

SK @
*nr+

(M
*nr+

!M
*nr+

M~1
n

M
*nr+

)~1SK
*nr+

p2
*nr+

/p2

N(NH(r)!Q(r)d)@(M(r)!M(r)M(1)~1M(r))~1(NH(r)!Q(r)d) (29)

by the continuous mapping theorem. The results for the test statistics follow
from standard manipulations. h

Proof of Theorem 3. Note that M(r)"[1#u(1!i)]v(r) where v(r) is de"ned in
(22). WLOG, rescaling allows us to set M(r)"v(r). Let

/(s)"(1#u(1!i))s!
u

1#u
((1#u(1!i))s!i)`. (30)

One can verify that /(s) is monotonically increasing and v(/(s))"s. Thus
M(/(s))"s, and MH(/(s))"s(1!s). Further, =(s)"N(/(s)) is a standard
Brownian motion and =H(s)"NH(/(s)) is a Brownian bridge. Making the
change of variables r"/(s), we conclude that

sup
n1xrxn2

NH(r)2
MH(r)

" sup
n1y((s)xn2

NH(/(s))2

MH(/(s))
" sup

v(n1 )xsxv(n2 )

=H(s)2
s(1!s)

. h

Proof of Theorem 4. As in the proof of Theorem 3, rescale so that M(r)"v(r).
Note v(1)"1. For the change of variables r"/(s) de"ned in (30), the Jacobian
is

J(s)"G
1#u(1!i) s(iH,
1#u(1!i)

1#u
s*iH,

where iH"i/(1#u(1!i)). As uPR, iHP0 and

:1
0

NH(r)2 dr

M(1)
"P

1

0

NH(/(s))2J(s) ds
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"(1#u(1!i))P
iH

0

=H(s)2ds

#

(1#u(1!i))

1#u P
1

iH
=H(s)2ds

P
1
(1!i)P

1

0

=H(s)2ds. h

Proof of Theorem 5. De"ne

S
t
(b)"

1

n

t
+
i/1

x
ni
u
i
(b).

Since u
i
(b) is iid N(0, 1), the stochastic process Sb

*nr+
, conditional on the sample,

has an exact distribution as a mean-zero Gaussian process with covariance
kernel M

*n .*/(r,s)+
NM(min(r, s))"<(min(r, s)) under (4). Hence S

*nr+
(b)N

1
N(r).

(For further details concerning the establishment of weak convergence in prob-
ability, see the proof of Theorem 2 in Hansen (1996)). Thus

F
t
(b)"(S

t
(b)!M

t
M~1

n
S
n
(b))@(M

t
!M

t
M~1

n
M

t
)~1

(S
t
(b)!M

t
M~1

n
S
n
(b))/(p( 2

t
(b)/p2)

N
1
(N(r)!M(r)M(1)~1N(1))@MH(r)~1(N(r)!M(r)M(1)~1N(1))

,F(r D 0)

and

SupF
n
(b)" sup

t1xtxt2

F
t
(b)N

1
sup

n1xrxn2

F(r D 0),¹(0),

as stated. This means that G
n
( ) ) converges uniformly in probability to G( ) ). By

the continuous mapping theorem we conclude

p
n
"1!G

n
(SupF

n
)P

$
1!G(¹(d))"p(d). h

Proof of Theorem 6. De"ne

S
t
(b)"

1

pJn

t
+
i/1

x
ni
u
i
(b)e8

i
.

The stochastic process S
*nr+

(b) has an exact distribution as a mean-zero Gaussian
process with covariance kernel <K

n
(min(r, s)), where

<K
n
(r)"

1

p2n

*nr+
+
i/1

x
ni
x@
ni
e( 2
i
N<(r).

Hence Sb
*nr+

N
1
N(r). The remainder of the proof is identical to Theorem 5. h
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